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Characteristic Features of Markov Flow
Games with Linear Constraints

Vassil Sgurev
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Abstract: The paper discusses a new class of the multi-step stochastic games 
Markov flow games, consisting of a set of Markov decision making processes with
different, in the general case not equal to one, own values and common linear
constraints, and on the other hand  some models of the games theory.

It is shown that the combining of the two mathematical structures leads to a
new class of games  Markov flow games.

Some characteristic features of these games with constraints are presented
and the possible ways of their future study.
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Introduction

During the 40-ies of the last century the scientific direction “Markov decision making
processes” (MDMP) [5] was founded and soon gained wide distribution.
At the end of the 60-ies of the same century, a specific class of Markov decision making
processes with additional constraints [10] attracted the attention of the researchers, and
was later generalized as Markov flows [12].

The present paper discusses a class of models, called Markov-flow games, in
which the characteristic features of two scientific directions – Markov flows and theory
of games, are combined. An attempt has been made to show the variety of these models
and the directions for their study and application.

Discrete models will be considered only. Hence, the adjective “discrete” will be
omitted in the text.
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I. From Markov decision making processes to Markov flows

The topic of Markov processes focused the constant interest of a great number of
researchers during XX century. Later on Acad. A. Kolmogorov proposed the use of the
tools of measure theory [1] in defining stochastic values, which made possible the
establishing of probability theory on fundamental mathematical grounds. The new
possibilities were soon transferred to Markov chains and processes [2, 3].

Up to the beginning of the 60-ies of the last century, mainly homogenous Markov
chains and processes with a fixed matrix of the transition probabilities were investigated.
The Markov processes considered are with a finite and infinite number of states, with
discrete and continuous time, homogenous and non-homogenous. Efficient applications
of these processes in different areas of natural and technical sciences were found and
they were widely used in the research and updating of different processes in biology,
demography, sociology and other scientific directions [4].

At the end of the 50-ies of the last century, R. Howard defined for the first time the
notion “Markov decision making process” (MDMP) (or “controllable Markov process”
– in another interpretation [5].

In the classical Markov chain [2, 3] the square matrix of transition probabilities
pnnn shows the probability distribution {pij} of passing from any current state i S
into an arbitrary state j S, where S is the set of states, in which the Markov process can
be found. At that, for every i S and  j S:

 pij = 1; 0  pij 1.
       jS

The Markov decision making process (MDMP) is characterized by the following
[5, 6]:

a) From each state i S  the decision maker (DM) can choose one of the
possibilities kKi, and the transition of the Markov process will be realized according
to the distribution {pk

ij   j S}, where Ki are the possible policies from state i S. Hence,
differing from the classical Markov process, in which all transition probabilities
{pij  i S, j S} are fixed, in MDMP the word strategy will denote a sequence of policies
 = {hn   n = 0, 1, ...}, where n is a discrete parameter of time.

b)  For every transition from state i into state j of the Markov process, an income
rij is obtained. If a policy kKi  be selected, the profit expected will be equal to
rk

i= pij rij The purpose is to maximize (minimize) it.
     jS

We shall consider further on MDMP with a finite number of states only.
For stationary MDMP with re-evaluation of the income , R. Howard has

developed an efficient interaction algorithm for -optimal strategy. F. D?Epenoax [7]
suggests the use of linear optimizing in determining the same strategy. For MDMP with
one ergodic class and without re-evaluation of the profit, R. Howard proposes another
interaction algorithm to define an optimal stationary strategy [5]. The same result may
be obtained applying the method used by De Chellinck [8], based on linear optimizing.

MDMP with additional linear constraints was proposed in 1969 in [10]. The same
paper notes that this class of MDMP has got new properties and that in MDMP with
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linear constraints the use of mixed (randomized) strategies leads to higher average
incomes than pure strategies use. A similar result, but for semi-Markov decision making
processes, is reported by Gertzbach.

In 1977, in [11] the control of several MDMP, called independent MDMP, on one
and the same set of states and with common linear constraints, was suggested. It was
proved that in this case the use of a set of mixed strategies leads to higher average profits
than pure strategies use only.

In “Howard” MDMP it is assumed that, similarly to classical Markov chains, the
stochastic process has not its own “values”, or put in another way, it has a single value,
which is not accounted during its running. Some problems arise in practice, when it is
necessary to consider sets of simultaneously controlled MDMP with common linear
constraints, in which each MDMP has its own value, not obligatory equal to one. This
leads to a principally new approach for MDMP interpretation as a specific flow on a
dynamic graph [12, 13]. A method is suggested in the same works for the presentation
of the set of MDMP with common linear constraints and non-single own values as a
network flow with linear capacity constraints (LCC-flow) and additional linear con-
straints (ALC), generally called a Markov flow [12]. The basis for such network-flow
interpretation lies in the recurrent relations, according to which the probability to go to
any state from n-th step is equal to the sum probability for leaving or remaining in this
state [6].   Thanks to this a number of results for the network flows [13] can be referred
to the class of Markov flows described. The latter can be regarded as a more generalized
model than the different classes of “Howard” MDMP.

The Markov flows are rich stochastic structures and combined with other ap-
proaches of operational research they enable the receiving of new relevant results, useful
in theoretic and applied aspect.

2. Game structures with linear constraints

The situations in which the interests of separate groups (sides) coincide partially or do
not coincide, or prove to be opposite are of interest in real-life activity. The last case leads
to a conflict situation. If the minor details are removed and only the essential part remains,
a formal mathematic structure, that can be regarded as a game will be obtained.

In 1944 J. Von Neuman and O. Morgenstern realize the systematic analysis and
research of the discipline, established as theory of games [14]. Later on it is applied in
wide areas of economy, techniques, biology, etc. [15, 16, 17, 18].

Within the frames of this theory the interested sides (players) act according to
apriori known rules with the help of specific strategies. In a conflict, every player chooses
their strategy, as a result of this a sequence of strategies is formed, called usual situation.
The interests of the players in selecting a situation concern the acquiring of an income,
called profit of the player in this situation.

The analysis of the games is realized from different points of view, namely:
development of optimality principles through determining a reasonable behaviour of the
players, analysis of the possibility for realization of these optimality principles, defining
an optimal behaviour and searching for an equilibrium situation.

Very often when pure strategies only are applied, no equilibrium situation between
the two players can be reached. In this case there is a possibility for stochastic assortment
of the strategies, each one of them selected with a definite probability. Thus mixed
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(randomized) strategies are accomplished, in which there is always an equilibrium
situation, considered optimal for both players.

The selection of the separate strategies in games theory likewise in MDMP may be
realized in the presence of additional linear constraints also.

The most broadly spread and studied class of games is that of the matrix
antagonistic games [14, 16]. Another important class of games, describing conflicts are
the positional games. Their dynamics influences the behaviour of the separate players.
The positional games are non-coalitional. They model the processes of successive
decision making by the players at incomplete and time altering information. Sequential
transition is done from one game state to another either by rational selection of one of
the possible strategies – satisfying the established game rules, or by stochastic selection.

The third class of well-studied games are the bi-matrix games, in which the interests
of the players do not always coincide, but still they are not antagonistic. Every player in
them, unlike in matrix games, has a personal payment matrix and strives to maximize
the profit [19]. Given that the interests of the players do not coincide, it is necessary to
find a compromise solution, which will satisfy both players to an extent. It is proved that
this can be achieved on the basis of an equilibrium situation, using mixed strategies. This
does not lead to antagonism of the interests, as in matrix games, but to behavioural
antagonism.

3. Some classes of Markov flow games with linear constraints

The application of game approaches to Markov decision making processes is offered
at the beginning of  70-ies of XX century [20], after obtaining the most important results
in MDMP. Many publications are available nowadays in that field – a good idea for this
can be found in [21, 22, 23, 24]. Some cases of Markov games in Boreal spaces are
discussed there.

The game situation is usually defined for two players, every one of them having the
possibility to select one of the policies possible for him, after that the controllable Markov
process goes to a new state, conveying incomes to the players in accordance with their
payment matrices. In case the profit (income) of the first one is a loss for the second, an
antagonistic Markov game with a zero sum is realized. Very frequently the first player
is active, while the second one personalizes the enemy nature, acting most unfavourably
against the first one. Games with a set of players are also defined, every one receiving
their own income when passing from one state to another.

It is evident, that the Markov games thus constructed are multi-step positional
games. They can be antagonistic or non-antagonistic, with re-evaluation or without re-
evaluation of the income, with or without constraints on the profits gained, continuous
or discrete.

The Markov flow described in the previous chapter is a specific structure, which
is not enclosed in the examples above described. It is possible to simultaneously control
not one, but several MDMP with non-single own values, on the transition probabilities
of which common additional linear equalities and inequalities are implied.

The definition of the following classes of Markov-flow games (MFG) is possible:
1. At a single Markov flow an antagonistic Markov-flow game with a single value

of the flow and with two players with opposite interests can be determined – one of them
attempts to maximize the income expected, while the other one – to minimize it. The
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controllable Markov flow has fixed transition probabilities and a set of possible policies.
Each one of the players influences the process selecting his mixed strategies from a state
i S, namely {qk

1i)} for the first one and {qk
2i)} – for the second. After such selection

of mixed strategies the Markov process will pass from state i to j at n-th step with a
probability

           Pij(n) = ((qk
1(i) pk

ij ) m1 +(qk
2(i) pk

ij ) m2 ),
               kKi

where 0 m1 1; 0 m2 1, m1 +m2  =1.

The parameters m1 and m2 reflect the influence of the mixed strategy selected by
the first and by the second player respectively. The income expected from n-th step for
a discrete time interval for the strategies selected is equal to ri(n) = pij (n) rij , where

                             jS
rij is the income, obtained at the process transition from state i to j.

When selecting a mixed strategy it is necessary to satisfy the typical for Markov
flow common linear constraints (equalities and inequalities) on the transition probabili-
ties, and also the possible constraints on the income gained.

A separate payment matrix can be constructed for each state for the income
expected at one step, its rows and columns corresponding to the pure strategies that can
be chosen by every player. When mixed strategies are selected, an equilibrium status for
one step of the process is attained.

The situation is still more complicated than in classical matrix games, since the
selection of mixed strategies at each step must be realized depending on the complete
process, i.e. it is impossible to make an optimal choice for one forward step only.
Selection of mixed strategies is necessary, accounting the possible behaviour of the
Markov process till its completing – if it has a fixed end, or of the optimal stationary
mixed strategy otherwise.

It is obvious that the definition of the optimal mixed strategies in MFG is a more
complex procedure than their computation in non-game Markov flows or in matrix
games.

The essence of the model discussed is not altered by the assumption that the second
player is of enemy disposition, acting against the first one in the most unfavourable way.

2. The previous model of MFG can be modified, if assumed that every one of the
two players gains different incomes in the process transition from one state to another.
Then a non-antagonistic game with bi-matrix game elements is expected.

In this case together with behavioural antagonism, there also appear supplementary
contradictions, since the two players control one and the same stochastic process with
common linear inequalities on the transition probabilities, which limits their possibilities
for choice of mixed strategies.

3. A MFG is possible when two players control two separate Markov flows
connected in-between by common linear constraints on the transition probabilities. The
expression 0 m1

1
 1; 0 m2 

21, then will denote the influence of the strategies being
selected by the first player in controlling the first and the second Markov flow
respectively. For the second game the analogous values are 1m1

1 and 1m2 
2

 respec-
tively. The final values 1 and 0 correspond to the case, when either the first player
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completely controls the first Markov flow, or he does not participate in this control. Some
cases are possible when one of the players does not participate in the control of the first
Markov flow, but the two players simultaneously control the second flow.

The two controllable Markov flows may have either equal policies and transition
probabilities connected with them, or different ones. They could possess either one and
the same incomes for a transition from one state to another, or different for the two
players. In the first case an antagonistic game is played, in the second one – non-
antagonistic game with behavioural antagonism and contradictions with respect to the
common linear constraints on the transition probabilities. Another case may also be
considered when the two players have antagonistic interests in the control of the first flow
and non-antagonistic (but behaviouraly antagonistic) in the control of the second flow,
keeping the common linear constraints.

4. The following generalized models are for a set of mutually connected Markov
flows V, controlled by several players T, where the number of the flows and players are
arbitrary finite numbers. In this case the influence of every player tT on each flow sV
is expressed by the values 0 mt

s
 1, for which

 mt
s = 1; for each sV.

             tT

All possible modifications of MFG, discussed in previous models of Ch. 1 up to 3
can be transferred to the cases when the players and flows are more than two. There is
a new possibility to construct coalitional MFG, when among the different coalitions of
players there exist antagonistic and non-antagonistic interests. The players may be
chasing common interests inside the coalitions (for example common coalition
maximization of the income), observing their own interests to certain limits.

5. Still greater variety of MFG can be achieved in the cases when personal (as a rule
different than 1) values of the controllable Markov processes are considered. All the
models described in Ch. 1 up to 4 could be generalized in a different way and with greater
diversity for the cases when the Markov processes have non-single own values.

6. For every model of MFG with more than one controllable Markov flow (or with
one flow, but with altering own value), the behaviour of the flows can be investigated
parallel to the incomes growth realized by them with the increase of their number or of
their own values. In this case due to the requirement for common linear constraints on
the transition probabilities, saturation of these constraints will be reached and realization
of the capacity values for the corresponding cuts  notions, which can be introduced to
MFG similarly to the usual Markov flows [12]. It is almost sure that in the case discussed
an analog can be found with the famous mincut-maxflow theorem of L. Ford and D.
Fullkerson, which in its game interpretation will signify that the maximal number of the
dependent Markov flows participating in the game (or of the maximal sum of their own
values) in MFG, is equal to the minimal value of the capacity on any of the possible cuts.

The introduction of the notions cut and capacity function in the theory of games
enables the study of these games with the help of network flows tools.

7. All models of MFG from Ch. 3 up to Ch. 5 may be adapted also for the cases
when the separate Markov flows are independent, i.e., when there are not any common
linear constraints on their transition probabilities. Then the number of the controllable
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Markov flows, or the sum of their own values is not above bounded and there do not exist
capacity functions on the separate cuts.

The models above described do not exhaust the entire variety of MFG. In general
it is greater than the different classes of Markov flows and of games types.

The complexity of the different MFG, especially of those with a set of flows and
games with non-single own values and with common linear constraints on the transition
probabilities is quite great.

In order to define the optimal mixed strategies, it is necessary to develop a set of
appropriate optimization procedures with acceptable computing complexity. More
efficient results can be obtained in some of the most complicated MFG, using
approximate methods for quasi-optimal decision making.

It is difficult to describe the whole sphere of practical problems, which can get
adequate description and efficient solution applying the described class of multi-step
stochastic processes – the Markov flow games. These applications must be searched
for in broad areas of production and services and in social-economic practice. In order
to implement them, it is necessary to study in detail the whole spectrum of MFG in
advance.
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Особености на Марковските потокови игри с линейни ограничения

Васил Сгурев

Институт по информационни технологии, 1113 София

(Р е з ю м е)

В работата се разглежда един нов клас на многостъпковите стохастични игри
Марковски потокови игри с линейни ограничения и доходи.

В тяхната основа лежи, от една страна, понятието за Марковски поток,
състоящо се от множество Марковски процеси за вземане на решение с различни,
в общия случай неравни на единица собствени стойности и общи линейни
ограничения, а от друга модели на теорията на игрите.

Показано е, че съчетанието на двете математически структури води до нов
клас игри  Марковски потокови игри.

Дадени са някои особености на тези игри с ограничения и възможните
начини на тяхното бъдещо изследване.


