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Abstract: A new strategy for controlling nonlinear parametrically dependent plants is
proposed in order to ensure a good control performance and keep up the simplicity of
Predictive Functional Control (PFC). Two alternative approaches are considered to realize
a quasi linear PFC: manipulated variable blending and neighboring models blending. In
this way it is avoided a nonlinear (NP) problem solving at each sampling time instant.
Very simple no iterative calculations are needed. This implies that the computational load
is slightly heavier in comparison with linear PFC (LPFC). The modified quasi-linear
PFC algorithms are applied to a pH waste water neutralization laboratory stand. A
comparative analysis is carried out between the proposed blending alternative approaches.
Their performance is also compared with PFC and PID control schemes.

Keywords: Predictive Functional Control, blending, pH neutralization, nonlinear
parametrically dependent plant.

I. Introduction

Model predictive control (MPC) is established approach in theoretical investigations
and industry with a stable increase of popularity in the last decade [3, 13]. A few
companies have obtained commercial success companies  ASPEN TECH,
HONEYWELL ( HI Spec), ADERSA, SHELL   Global Solutions. The total
estimation shows that linear MPC (LMPC) applications are more than 4500 worldwide
[12, 14] . The theoretical achievements in LMPC and increased number of
computations result in appearing of fourth generation commercial codes  DMC +
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(ASPEN Tech) and RMPCT (HONEYWELL) which posses some important new
peculiarities – improved identification technology, robust control design, steady-state
optimization, new humane-machine interfaces [12]. At the same time nonlinear MPC
(NMPC) still has a limited marketplace [1] much smaller than that of linear MPC
(LMPC). The reason is in the computational complexity of NMPC algorithms.

Both academic researches and industrial development in NMPC area continue
to grow. The main efforts are directed to obtain practical control calculations.

A successive linearization procedure and extended Kalman filter (EKF) are used
at each sample time instant to solve a quadratic programming problem (QP) [10]. The
prediction equation can be computed via no iterative nonlinear integration. A large
number of additional tuning parameters from EKF may complicate online tuning
procedures since the performance and stability of the overall closed loop dependent
also upon state estimation [16]. In [3] an algorithm is proposed to determine the
solution of robust optimal control as a function of the initial state.

The on-line computation of the resulting MPC controller is reduced to a simpler
linear function evaluation. Two new NMPC techniques and special dynamic optimizers
that require reduced computational load are proposed in [5] but the nonlinear
optimization problem has to be solved at each sampling instance. In [11] an
improvement is proposed in solving nonlinear programming problem for each time
stop and for each search step in order to guarantee convexity of the objective function
in a constrained NMPC algorithm. The difficulties with the efficient solution of
nonconvex optimization problem of NMPC on-line are referenced in [15]. By applying
a newton-type algorithm which exploits the structure of NMPC problems authors
achieve a very few iterations compared to general purpose nonlinear programming
solvers. In [16] two stage procedure in NMPC is accepted: firstly the optimal linear
unconstrained input sequence is obtained by solving algebraic Riccati equation, second,
by using a local linearization of the nonlinear model around a predetermined target
trajectory a quadratic programming problem (QP) is solved at each time step. A Winer
model based NMPC is considered in [6]. The moderate level of computational
complexity is retained by combination of LMPC and gain scheduling.

In this paper a Predictive Functional Control strategy [13, 14] is proposed to
control strongly nonlinear plants. The developed procedure does not solve nonlinear
programming problem at each time period in order to calculate control action within
a fixed sampling time instant. A Multi-model approach is accepted to describe the
parametrically dependent plant model used by the procedure. Local time invariant
models are defined for a number of points of the static process characteristic Fig. 4.
Two effective blending approaches are studied – blending of manipulated variables
(Output Blending Control Scheme) calculated for two neighboring models, quasi
LPFC based on a model with blended coefficients (Model Blending Control Scheme).
Some preliminary investigations in nonlinear parametrically dependent plants are
reported in [2, 18].

In this paper a comparative analysis of both blending approaches is carried out.
The developed procedures are also compared to LPFC and PID control schemes. The
proposed approach differs from both parametrical PFC [13] and gain scheduling control
[7, 8, 17]. Simulation experiments are fulfilled with pH neutralization waste water
stand.
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II. Basic predictive functional control algorithm
The basic Predictive Functional Control Algorithm derived by J.Richalet is described in
details in [13]. The main concept of the algorithm is presented in Fig. 1.

                                                          Fig. 1. PFC basic concepts

An exponential reference trajectory yRef with a time constant TR is defined and
initialized on either the measured or predicted process output yPred depending on model
time delay presence. We look for a control action which assures intersection between
future process output yp and the reference trajectory at the coincidence H. The structure of
the manipulated variable must be a priory considered as a combination of basis functions.
In this approach step-like basis functions are accepted . We assume that the process is
described by first order lag with pure time delay:

(1)                                    pde
Tp

kpW 



1

)( .

By sampling the continuous transfer functions (1), the process model can be obtained
in the following form :

                 )()1()()1( MMMMMM rnuknyny   ,

where 0T  is sample time, TT
M e /0 , 0/TdrM  , kkM  .

PFC algorithm uses a special technique to control delayed plants with non-delayed
models that simplifies the computations and finally the process model becomes:

                     )()1()()1( nuknyny MMMMM   .
Considering Fig. 1, the following equations can be written:

(2)                    )?)(()()( PredRef yrnCHrnyHrnC H   ,
(3)                                 )()(Ref HrnyHrny P  ,
where RT

T

e
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 . From (2) and (3) we can obtain:
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(4)                        )?)(()()( PredyrnCHrnCHrny H
P   .

The future model increment Ap can be expressed by the following equation:
(5)                                         Pred?)( yHrnyPP  .

Let us assume that the future setpoint is constant throughout the whole prediction
horizon, i.e.
(6)                                const.)()(  CrnCHrnC

The predicted value of the process fiPred is given by the following equation since the
process model is non-delayed:
(7)                                  ).()()(?Pred nyrnynyy MMP 

The PFC approach states that the desired increment of the process should be
equal to the model increment MP  , thus:
(8)                                   )()( nyHny MMP  .

If we combine (4), (5), (6) and (8), the following equation can be written
(9)                            ).()()?)(1( Pred nyHnyyC MM

H  
The application of step-like basis functions gives the following expressions for the

future model output at the H-th time instant:
(10)                           )()1()()( nuKnyHny H

mmM
H
mM   .

We can write the following expression for the control action with respect to (9)
and (10):

(11)                                   .
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III. Problem statement

In industry there is a variety of plants in which the model coefficients depend on
parameters that are functions of time or other parameters. Some of these typical plants
are heat exchangers, in which the parametric variable is the load; reheating furnaces
where the parametric variable is the current capacity; gas absorbers in which the
absorbent is a parametric variable etc. Two different types of influences act on these
plants - co-ordinate, which acts on the output variable directly and parametric, which
acts on the plant parameters. The transfer function this type of plants can be written
in the following form:

(12)                                 
)(

1)(
)(),( 


 pde
pT

kpW 


 ,

where  can be one of the following variables process input, process output, external
parameter. These plants are well studied and some control schemes are proposed in
[8, 17]. In this paper a pH neutralization stand is taken under consideration. As can be
seen (Fig. 4) the pH plant has extremely nonlinear static characteristic. In this case
the plant output (potential of hydrogen (pH)) plays the role of the parametric variable.
For each “critical” point on the static characteristic a local linear time invariant model
is identified. “Critical” points are defined as local extrema of static characteristic
derivative function.
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IV. Output blending control scheme for nonlinear plants

Fig. 2. Output blending control scheme

The output blending control scheme with several parallel working Predictive
Functional controllers (Fig. 2), is proposed by H a d j i s k i  and  A s e n o v, [2]. The
main idea of the control strategy is implementation of several simple PFCs. At each
time instant the control action is represented as a weighted sum of two neighboring
controllers’ outputs. The weight coefficients are proportional to the “distance” of the
parametric variable to the local models (13)

(13)                      
12
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



i

,

where  is the current value of the parametric variable ;
 ,   the values of the parametric variable for witch the local models are

identified.
Then the blended output can be computed by the next expression:

 (14)                             )()()( 2211 nUnUnU   ,
where )(1 nU  and )(2 nU  are the local controllers outputs At each time instant as the
setpoint moves to different points the control action is calculated trough (14) but
different neighboring models are used always indexed with 1 and 2.

V. Model blending control scheme for nonlinear plants

A similar control strategy is considered in [18]. The basic concept is to compute the
control action on the basis of an equivalent linear plant model:

(15)                                      
eq

1
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eq

eq
eq

pde
pT

k
pW 


 .

The equivalent linear model coefficients can be computed proportionally to the
distance of the local models:

                                        2211eq kkk   ,

(16)                                         2211eq TTT   ,

                                        2211eq ddd   ,
                            )()()( 2211 nynyny MMM   .
The control action is computed trough formula (11) where  mK , m  and edyPr? are

obtained from the equivalent model.
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VI. Output blending and model blenidng control schemes comparison

Let us take the simplest case where the nonlinear plant is represented by a Winner model
connected linear dynamical part and nonlinear static part in series. We can rewrite (1)
and (11) in the following z form
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which combination gives
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where )()( zyCze P .

 Output blending approach. Since we have assumed that the process model is
represented by a Winner model, all local models with some degree of approximation
would have the same dynamic part but different gains. Thus for the local neighboring
controllers’ outputs the following expressions can be written:
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Considering (14) , (20) and (21) we can write the final formula for the control action
produced by output blending control scheme
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Comparing (22) and (11), the following expression for the “equivalent” model gain
can be written:

(23)                                   
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 Model Blending Approach. Considering (16) and the assumption made above
the following equations for the process model and the control action can be written:
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(26)                      
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As it can be seen from equations (22) and (26) the difference between both blending
approaches is in the manner in which the “equivalent” coefficients are computed. Although
they apply different “equivalent” coefficients both control values are quite close for the
considered pH neutralization stand (Figs. 6-9).

VII. Simulation results

The pH neutralization stand scheme comprises three tanks for different acids Tank 1,
Tank 2 and Tank 3 and one tank for a base Tank 4 (Fig. 4) [4].

 Fig. 3. pH pilot plant
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The control valves VjV5 ensure the
feeding of the reaction part of the
installation with desired combination of
strong, medium and weak acids as well
as with a strong base. This allows to obtain
the nonlinear titration curve for given
combination of acids in a large regime
area. The reaction area of the installation

considers two sections – diffusion section and stirring section. The purpose of the
diffusion section is to ensure a desirable transport time delay by using different valves
V6V10 . The purpose of the stirring section is to mix the reacting components. The
used strong acids are: HCl (Tank 1) and H2S04 (Tank 2). The weak acid is CH3COOH
(Tank 3). The neutralization reagent is sodium hydroxide NaOH , which is a strong
base (Tank 4). In Fig. 5 it is presented a titration curve received as a combination of
the given acids and a base. As can be seen it is strongly nonlinear and its derivative is
not monotonic. The values of the local gains differ more than ten times. Control of
this plant in full range of operational conditions by controller with fixed tuning
parameters is impossible or system performance will be extremely poor and
unsatisfactory. In order to overcome the drawbacks of these control problems the
proposed above strategy is implemented. According to Fig 4. six local models
M1M6 are derived by experimental identification under the following assumptions:
the gain is determined by the titration curve in the corresponding point because the
flow rate is almost constant, the dead time and the time constant are equal for the all
local models. In Figs. 5 and 6 it is shown the performance of the developed control
schemes subjected to step-like setpoint changes without disturbances at the acid flow
Q1; A   controlled variables (pH); B   manipulated variables ( flow Q2 ).As it can be
seen both considered schemes show similar performance. Additionally in Fig. 6 it is
shown the system performance with PID controller. PID tuning parameters are chosen
in such a way to guarantee optimal control performance in the whole examined region.
It is obvious that the PID controller performance is much poorer than that of
MB-PFC and OB-PFC schemes. The same variables are shown in Fig. 7 subjected to
disturbance at the acid flow Q1 while the setpoint is kept constant (pH=6). PID
performance is still poor while the MB-PFC and OB-PFC schemes act better in a
similar manner. In Fig. 8 there are presented the controlled variables (A) and
manipulated variables (B) of the output blending predictive functional control scheme
(OB-PFC), and linear predictive functional control scheme (LPFC) with different
models subjected to step-like setpoint changes (pH = 5, pH = 6). The gains of local
models for the considered points (pH = 5, pH=6) differ about 5 times. LPFC* curve is
obtained by applying the lower gain model (pH=5). On the contrary, LPFC** curve is
obtained by applying the higher gain model (pH=6). The LPFC* curve becomes
unstable at pH=5 while LPFC** performance is extremely slow in both directions.

Fig. 4. pH pilot plant static characteristics
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  Fig. 5. Model Blending and Output Blending               Fig.  6. Model Blending, Output Blending
 control schemes performance subjected to step-            and PID control schemes performance
like setpoint changes: 1 – OB-PFC; 2 – MB-PFC           subjected to step-like setpoint changes:
                                                                                      1– OB-PFC; 2 – MB-PFC

Fig. 7. Model Blending, Output Blending and       Fig. 8. Linear PFC and Output Blending
 PID control schemes performance subjected       control schemes performance subjected to
       to unmeasured disturbance changes:                        setpoint changes: 1 – LPFC*;
       1 – OB-PFC;  2 – MB-PFC; 3 – PID                          2 – OB-PFC; 3 – LPFC**
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VIII. Conclusions

Two new control strategies (OB-PFC and MB-PFC) for control of nonlinear plants are
proposed in order improve the control performance and keep up the simplicity of Predictive
Functional control techniques.

The described control algorithm has been applied to a neutralization laboratory
stand showing good control performance and similar behavior.
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